3.811 \(\int \frac{A+B x^2}{\sqrt{e x} (a+b x^2)^{3/2}} \, dx\)

Optimal. Leaf size=144 \[ \frac{\left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (a B+A b) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right ),\frac{1}{2}\right )}{2 a^{5/4} b^{5/4} \sqrt{e} \sqrt{a+b x^2}}+\frac{\sqrt{e x} (A b-a B)}{a b e \sqrt{a+b x^2}} \]

[Out]

((A*b - a*B)*Sqrt[e*x])/(a*b*e*Sqrt[a + b*x^2]) + ((A*b + a*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a]
 + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(2*a^(5/4)*b^(5/4)*Sqrt[e]*S
qrt[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0899193, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {457, 329, 220} \[ \frac{\left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} (a B+A b) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{2 a^{5/4} b^{5/4} \sqrt{e} \sqrt{a+b x^2}}+\frac{\sqrt{e x} (A b-a B)}{a b e \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/(Sqrt[e*x]*(a + b*x^2)^(3/2)),x]

[Out]

((A*b - a*B)*Sqrt[e*x])/(a*b*e*Sqrt[a + b*x^2]) + ((A*b + a*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a]
 + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x])/(a^(1/4)*Sqrt[e])], 1/2])/(2*a^(5/4)*b^(5/4)*Sqrt[e]*S
qrt[a + b*x^2])

Rule 457

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d
)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*b*e*n*(p + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*b
*n*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) ||  !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] &&
 LeQ[-1, m, -(n*(p + 1))]))

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{A+B x^2}{\sqrt{e x} \left (a+b x^2\right )^{3/2}} \, dx &=\frac{(A b-a B) \sqrt{e x}}{a b e \sqrt{a+b x^2}}+\frac{(A b+a B) \int \frac{1}{\sqrt{e x} \sqrt{a+b x^2}} \, dx}{2 a b}\\ &=\frac{(A b-a B) \sqrt{e x}}{a b e \sqrt{a+b x^2}}+\frac{(A b+a B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+\frac{b x^4}{e^2}}} \, dx,x,\sqrt{e x}\right )}{a b e}\\ &=\frac{(A b-a B) \sqrt{e x}}{a b e \sqrt{a+b x^2}}+\frac{(A b+a B) \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{e x}}{\sqrt [4]{a} \sqrt{e}}\right )|\frac{1}{2}\right )}{2 a^{5/4} b^{5/4} \sqrt{e} \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0570964, size = 75, normalized size = 0.52 \[ \frac{x \left (\sqrt{\frac{b x^2}{a}+1} (a B+A b) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{b x^2}{a}\right )-a B+A b\right )}{a b \sqrt{e x} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/(Sqrt[e*x]*(a + b*x^2)^(3/2)),x]

[Out]

(x*(A*b - a*B + (A*b + a*B)*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^2)/a)]))/(a*b*Sqrt[e*x
]*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.021, size = 213, normalized size = 1.5 \begin{align*}{\frac{1}{2\,a{b}^{2}} \left ( A\sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{2}\sqrt{{ \left ( -bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{-ab}b+B\sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{2}\sqrt{{ \left ( -bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{-ab}a+2\,Ax{b}^{2}-2\,Bxab \right ){\frac{1}{\sqrt{b{x}^{2}+a}}}{\frac{1}{\sqrt{ex}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/(b*x^2+a)^(3/2)/(e*x)^(1/2),x)

[Out]

1/2*(A*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(
1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*(-a*b)^(1/2)*b+B*((b*x+(-a*b)^(1/2)
)/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b
*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*(-a*b)^(1/2)*a+2*A*x*b^2-2*B*x*a*b)/(b*x^2+a)^(1/2)/a/(e*x)^
(1/2)/b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x^{2} + A}{{\left (b x^{2} + a\right )}^{\frac{3}{2}} \sqrt{e x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(b*x^2+a)^(3/2)/(e*x)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)/((b*x^2 + a)^(3/2)*sqrt(e*x)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B x^{2} + A\right )} \sqrt{b x^{2} + a} \sqrt{e x}}{b^{2} e x^{5} + 2 \, a b e x^{3} + a^{2} e x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(b*x^2+a)^(3/2)/(e*x)^(1/2),x, algorithm="fricas")

[Out]

integral((B*x^2 + A)*sqrt(b*x^2 + a)*sqrt(e*x)/(b^2*e*x^5 + 2*a*b*e*x^3 + a^2*e*x), x)

________________________________________________________________________________________

Sympy [C]  time = 18.2242, size = 94, normalized size = 0.65 \begin{align*} \frac{A \sqrt{x} \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{3}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac{3}{2}} \sqrt{e} \Gamma \left (\frac{5}{4}\right )} + \frac{B x^{\frac{5}{2}} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{5}{4}, \frac{3}{2} \\ \frac{9}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac{3}{2}} \sqrt{e} \Gamma \left (\frac{9}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/(b*x**2+a)**(3/2)/(e*x)**(1/2),x)

[Out]

A*sqrt(x)*gamma(1/4)*hyper((1/4, 3/2), (5/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(3/2)*sqrt(e)*gamma(5/4)) + B*x
**(5/2)*gamma(5/4)*hyper((5/4, 3/2), (9/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(3/2)*sqrt(e)*gamma(9/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B x^{2} + A}{{\left (b x^{2} + a\right )}^{\frac{3}{2}} \sqrt{e x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(b*x^2+a)^(3/2)/(e*x)^(1/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)/((b*x^2 + a)^(3/2)*sqrt(e*x)), x)